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Abstract

\ This paper applies techniques of Quantile Data Analysis to

non-parametrically analyze time series functions such as the

sample spectral density, sample correlations, and sample partial

correlations. The aim is to identify the memory type of an

observed time series, and thus to identify parametric time domain

models that fit an observed time Series. Time series models are

usually tested for adequacy by testing if their residuals are

white noise. It is proposed that an additional criterion of fit

for a parametric model is that it have the non-parametrically

estimated memory characteristics. An important diagnostic of
memory is the index of regular variation of a spectral

density; estimators are proposed for . Interpretations of the

new quantile criteria are developed through cataloging their

values for representative time series. The model identification

procedures proposed are illustrated by analysis of long memory

series simulated by Granger and Joyeux, and the airline model

of Box and Jenkins.

Research suppor d in part by the Army Research Office and
the Office of Naval Research.
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Dedication

This paper is dedicated to the memory of Gwilym M. Jenkins.

The contributions to time series analysis of Gwilym M. Jenkins

(1932-1982) will always be embedded deeply into the field. His

work (especially joint work with George Box) has influence in

diverse fields of science. I was fortunate to come to know

Owilym early in my career, on a visit to London in 1958. He

spent 1959-1960 with me at Stanford and I spent 1961-1962 with

him at Imperial College. He earned the respect and affection

of all who knew him or his work. His life and work was heroic.

As we contemplate the sadness of his death so young, may we

continue to enjoy his spirit.



1. FUN.STAT approach to time series model identification

The need to analyze data arising in the form of time series

arises in diverse fields. The concept of a conventional analysis

is not the same in each field. Engineers tend to estimate mean,

variance, and spectrum (which may be regarded as a non-parametric

* signature of models). Economists and forecasters tend to

estimate mean, variance, and time domain models such as ARMA or

ARIMA (which are parametric models). Spectral and ARM4A

estimation are not routine procedures; there are many algorithms

for spectral estimation and time domain model identification.

In addition there are critics of spectral and correlation

* based methods of time series analysis, of whom the most

prominent is iMandelbrot (1982). This paper describes an

* approach to time series analysis which attempts to use diverse

* methods of analysis simultaneously in order to meet the needs

of all the fields of applications of time series analysis.

It also aims to integrate spectral and correlation methods

4 with methods for long memory and/or long tailed time series.

An approach to spectral analysis and time domain modeling

of time series is described in Parzen (1979), (19830), (1981),

(1982), (1983a), (1983b), (1983c). An approach (motivated by

time series methods) to statistical data analysis of probability

* distributions is described in Parzen (1979), (1982), (1983a),

1983b), (1983c), (1983d); it is called the Quantile Data Analysis

and FUN.STAT approach, to connote that it is based on functional
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statistical inference, entropy and information measures, and

quantile and density quantile approach.

Parzen (1980) states that "a criterion that any general

time series modeling strategy must fulfill is that its

conceptual framework should provide a role for the continuing

quest for a time series decomposition. ... Thus it seems

critical that a successful approach to time series modeling

employ simultaneously both the spectral domain and the time

domain." This paper discusses the enhanced insight to be

obtained by also employing simultaneously the quantile domain

* and the information domain.

This paper discusses how to add to our approach to time

series model identification new diagnostic measures, based on

quantile data analysis of spectral density function, and

information measures. The approach implemented in our time

series computer program library TUMESBOARD is called ARSPID

(for autoregressive spectral identification). The "enhanced"

approach could be called ARSPIQ (for autoregressive spectral

information quantile identification).

In empirical time series analysis a central role in model

identification is the concept of memory [see Parzen (1981)]

which yields a classification of a time series into one of the

following three classes:

no memory = white noise

short memory stationary ergodic but not white noise

long memory trends, seasonal cycles, long cycles,
non-stationary

'S. . - ~4. ~ - .- --
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When a time series is classified as no memory (white noise),

it requires no further analysis (except for quantile

identification of its probability distribution).

When a time series is classified as a short memory time

series, it is described (parametrised) by ARI4A(p,q) schemes

that transform it to white noise. The orders p and q are not

measures of the length of memory.

When a time series is classified as a long memory time

series it is described (parametrised) by operators which

transform it to a short memory time series.

To describe the dependence structure of a time series one

introduces quantitative indices which are non-parametric

statistics guiding our choice of parametric models.

An ARMA model (which is a finite parameter time domain

* model) is a parametric description of the dependence structure

*o'of a short memory time series. A nonparametric description of

*, its dependence structure is provided by the spectral density

function from which one can deduce "significant frequencies"

(at which the spectral density has local maxima).

The operations which transform a long memory time series

to a short memory one (or which represent a long memory time

series in terms of a short memory one) can be considered a

parametric time domain model. Nonparametric descriptions of

long memory properties are introduced in this paper in terms of

the index of regular variation of the spectral density at a

specified frequency, usually zero frequency.

. .. . . j% ...... ... -. . .... -. .....- .... ....-...... .. ' .. - ... .. . .. ' . . ..2.. ...-.. ...
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2. Quantile identification of probability distributions

To identify probability distribution that fit a time series

sample Y(t), t=l,...,T, one treats the sample as a data batch

X11 ...o n

For a data batch X, .. ,Xn one can define the sample

distribution function F(x), --<x<-, defined by

F(x) - fraction of X,... Xn which are < x,

and the sample quantile function Q(u), O<u<l, defined by

Q(u) - F-(u) = inf {x: F(x) > u)

Quick and dirty insight into the distributions that fit the

univariate distribution function F is provided by a plot of

the sample informative quantile function

- Q(u) - Q(.5) 0
IQ(u) <l

2{Q(o.75) - Q(0.25)) - -

The IQ function is plotted with a vertical scale from -1

to 1; its values are truncated when they exceed +1. For ease

of interpretation of the IQ function, we also plot the IQ

function of the uniforn distribution which is a straight line

passing throug "and (1, .5).
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The distribution functions F(x) that we seek to fit to

the data are usually of the form

F(x) = F 0 - )
0 a

for parameters p and a to be estimated, and F 0X) a known

distribution function. The most important cases of Fo(x) are:

x
normal Fo (x) O (x) f 0(y) dy

= 1/21
(y) (27) exp - y

exponential F(x) = 1 e-X , x > 0

One can test (before parameter estimation) the goodness of fit

of F(x) to F(x) f F ( aP) by introducing the weighted spacings

d(u) - foQo(u) q (u)
&0

where: foQo(u) = fo(Fol(u)) is the density-quantile function

of the specified distribution; q(u) - Q'(u) is the sample

quantile density function (expressible in terms of spacings, or

differences of successive order statistics); and

00 Jo f Q (u) q(u) du0 0..
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- is an. estimator of a called the score deviation. The test

function is the cumulative weighted spacings function

D(u) = fu d(t) dt, O<u<l

which one compares with the uniform distribution D(u) = u.
To test for exponentiality, take f oQo (u) = 1 - u. The

diagnostic function D(u) will appear linear when the data is

exponential. In the important case of a mixture distribution,

[that is, the lower order statistics represent values from an

exponentially distributed sub-population], D(u) will be linear

over an initial interval 0_u<p. When the data batch is the

* sample spectral density, the value p estimates the proportion

of the total power which is white noise.

Diagnostic measures of time series parameters [the sample

spectral density and correlogram] are provided by plots of

suitable IQ(u) and D(u) functions. Examples of their power as

discriminators of memory are given in Section 7.

Quantile Data Analysis of Sample Spectral Density

When the sample mean Y is large, it is necessary to transform

Y(t) to Y(t) - I; otherwise one would always obtain a diagnostic

that Y(-) is a long memory time series. An alternative first

step in time series analysis is to replace Y(t) by

{Y(t) Q(o.5)) - 2{Q(O.75) -Q(.25)1

....

*'"-"" ""'.'- *.**1 "'-" '"" "~ ". "-. . is . ,. ,- , - -*.. - . - . . . - .- -- , ' - -
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When Y(t) is a pre-processed time series (from the sample,

the mean or median has been subtracted) one computes the sample

Fourier transform

T
()= ) Y(t) exp (-2Triwt)

t=l

at an equi-spaced grid of frequencies in O<w l of the form

w k/S, k=0,1,...,S - 1. We call S the spectral computation

number; one should choose S > T + M, where M is the maximum

lag at which one computes sample correlations p(v).

The sample spectral density f(w), O<w<l, is computed at

w w = k/S by squaring and normalizing the sample Fourier transform:

2 1S-1 k 2
k=O

The classification of the time series as no memory (or

white noise) is equivalent to the random variables representing

the values of the sample spectral density

f(w), w"k/S k1l,...,[S/2]

having the property that they are asymptotically independent

and exponentially distributed. Therefore tests for white noise

can be obtained by quantile data analysis based tests for

exponentiality of the sample spectral density f(w) at suitabie

frequencies.

%"%"- • " .• -.- •. - 2*. . ......• ... .
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The data batch f(g), k=0, 1,...,S/2, is tested for

exponentiality by forming its informative quantile function

IQ(u) and its cumulative weighted spacings function D(u), with

foQ (u) - 1-u. How one interprets the quantile data analysis of

the sample spectral density (periodogram) is best illustrated by

examples.

A -
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3. Correlation diagnostics for model memory identification

The time series analyst seeks to develop for an observed

sample time series Y(t), t-l,2.,...,T of a time series Y(t),

t=0, +1, ... various functions that can be estimated and plotted

which provide insight into, and diagnostic measures of, possible

models that fit the observed time series.

Schuster (1898) pioneered techniques of spectral analysis.

To detect hidden periodicities, Schuster proposed calculating

what we today call the sample unnormalized spectral density or

periodogram

T
fw) 1 T2-ijw

f I Y(t) exp (-22itw) 0.5<w<0.5.fT(w) it- I  _

One actually computes and plots fT(w) at an equi-spaced

grid of frequencies wk- kiS, k=0,1,..., S-l, where S is the

spectral computation number. Using the Fast Fourier Transform,

one chooses T<S<2T.

The graph of fT(w) is a very wiggly function. If one

interprets local maxima of fT(w) as indicating "significant

frequencies" representing "hidden periodicities" one obtains

many spurious periodicities.

The notion of the spectral density f(w) of a time series

. 1Y(t), t-0, +1, ... is defined heuristically by

f(W) - lim f() .2W
.I

...............................
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If the limit existed one might call f(w) the asymptotic spectral

density of the time series. However the limit does not exist in

any customary mode of convergence.

Wiener (1930) proposed solving the harmonic analysis

problem by defining the sample covariance function %(v) which

equals the Fourier transform of fT():

RT(v) = Y(t+v) Y(t) , v = 0, 1,...,T-1

=0 , v>T,

SRT(-V) v<0

0.5
RT(v) = f exp (2,rivw) fT(w)

-0.5

The limit whose existence needs to be assumed is

R(v) - lim RT(v)

one calls R(v) the asymptotic covariance function of the time

series. One calls

the asymptotic correlation function; it is the limit of the sample

correlation function

..........................
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RT (v)PT (v) S

The sample correlation function PT(v) is an important

building block for methods of model identification. Its plot

is called the correlogram. One could test for white noise by

testing whether PT(v), v-1l,2,.., N constitute a random normal

data batch.

The cumulative periodogram

FT(w) - fo T( ') dw

is a diagnostic tool for providing evidence of hidden

periodicities. If it converges, its limit function F(w)

provides a spectral representation of R(v):

R(v) - fl° exp 2nivw dF(w)

A probability model under which the asymptotic covariance

functions exists is the following: Y(t), t-0, +1,... is a zero

mean Gaussian covariance stationary time series with covariance

function R(v) satisfying (for all t and v)

R(v) E [Y(t+v) Y(t)]

When the time series is stationary and ergodic, the sample

covariance function converges to the covariance function.

- " '*****. , , ", '-. *4. .'-, .*'::,. . :i ?- * ., - .,, , - , - . . -• -,
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A Gaussian stationary time series is ergodic if and only if

T

1 R2
liml y R (v) - 0

It is natural to classify a stationary time series into

three classes according to the rate of decay of the correlation

function p(v):

1 T
white noise y p' (v) - 0 for all T

(no memory) v-l

ergodic1 T
ergodic T P2 (v) 0 as T
(short memory)

T.

non-ergodic p2(v) 0
(long memory)

One of the aims of this paper is to discuss the unifying role of

the concept of memory. The foregoing trichotomy indicates that

there are three types of memory (no, short, long). However the

insights into model identification provided by the notion of

memory are captured not by definitions in terms of correlations

(or even partial correlations) but by definitions in terms of the

spectral density function and sample spectral density.

.
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4. Spectral density memory classification and indices

The spectral density function f(w), -0.5<w<0.5 is defined

as the Fourier transform of the correlation function p(v):

f(w) e-2nivwp(v)

A sufficient condition for f(w) to exist as an ordinary function

is that p(v) is summable. A long memory time series may not

possess a spectral density. To be able to use such a function,

we introduce the sequence of approximating spectral densities

fT(U) vj exp (-21Tivw) p(v) (1- I-TL)T~ I <TT

The correlation criteria for memory classification provide

equivalent criteria in terms of

0.5- T 2
Var [fT f 05{fT(w) - 1dw =2 v p(v) (I-L~L., -0.5 v I

However a more useful criterion is the dynamic range of fT(w).

We discuss its definition only for the case that f(w) exists.

A stationary time series can have a spectral density f(w)

and yet not be representable as an autoregressive process. One

needs to assume an additional condition such as f(w) is bounded

above and below; for some constants cI and c2, 0 < cI < f(w) <

c2 < .The dynamic range of f(w) is defined to be

d',9 , ' v. 
q  

. . a . . . . . . -' ' "- . - - -"," . . . " . " " , " .-9 .' .-. . - - - - ." '

.. .. . . . •'".-_9.~. . , h 'r h . - ;~ ~l ,n~ i, ,. ,-
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{mDax log f(w) _min log f(w)J
w w

Dynamic range classification of memory of a time series:

no memory dynamic range - 0

short memory 0 < dynamic range <

long memory dynamic range -

Often, zero frequency is the frequency at which the spectral

density has a behavior causing it to have infinite dynamic range.

As w-0, the spectral density f(w) is assumed to be a regularly

varying function, with the representation [called the regular

variation representation at frequency w-O]

f(W) - W-6L(w)

where L (w) is a slowly varying function. The value of 6 is an

index of length of memory, since

No and short memory 6 - 0

Long memory 6 0

Long memory time series models considered by Mandelbrodt (1973),

. Granger and Joyeux (1980). and Peweke and Porter-Hudak (1983)

*: have spectral density f(w) satisfying the regular variation

representation. The index 6<0 corresponds to a zero value for

a,

*.",,';," " _."*, ", '. .- ".. . "- , - - . . . . . . " ... -- . "
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f(w) at w-O, while 6>0 corresponds to an infinite value for

f(w) at w-0.

When 6>0, the spectral density f(w) is an integrable function

only for 0<6<1; the correlation function p(v) decays slowly as

6-1(v) ,- V as v

The value at w-0 of f(w) can be and still 6=0; this holds for

f(w) -. (logw) 2 for small w, corresponding to

P(v) . log v as v .
v

A symbolic spectral density f(w) with 6>1 is that of a time

series Y(.) whose first difference AY(t) = Y(t) - Y(t-l) is

short memory (covariance stationary with spectral density

bounded above and below); then

fy( W AY

and 6-2.

Parzen (1983d) gives explicit formulas for the index 6 in

the context of density-quantile estimation:

16 lim I log f(wy) dy - log f(w)
0

-lim I fw log f(A) dA -log f(w)
w 0
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To estimate 6 one forms

k~~1

log f) log f(-k+l6ki n

where n and k are integers tending to in such a way that k/n

tends to 0. One can show that

6 lim 6
9.. k-.o

k/n P0

A similar formula can be used to estimate 6 in a regular

*!i variation representation of f(w) at a frequency wo: represent

*"o = m/n and define

k
= 1 f lo f k+l

Examples of estimates of 6 are given in Section 7.

We estimate the memory index 6 from consistent estimators

f(w) of the spectral density f. We use: (1) the non-parametric

kernel spectral density estimator

Co

f(w) k(j)p T (v) exp -21riwv w 1<o.5

with truncation point M T 7 8 (in practice, we use M = T/2)

and Parzen window

9.I

• ' ' " " " % ' o - : , - o % . , -*9,4 
"
" ; "C " " " " " " - ' . . ' ' , . "' , - " -

"
' ' - " ' " " , . " o " - " . - . " . ""
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k(t) -1 - 6t2 + 61tl Itl < 0.5,

32 (1- Il 3 0. 5 < I t l

0 , otherwise

and (2) autoregressive spectral density es'timators.

Only examples can show which values of 6 occur in real

series. The goal in estimating 6 is to develop diagnostics

concerning the "detrending" operations to be used to transform

a long memory series to a short memory time series. To model

time series, Box and Jenkins (1970) introduced the ARIMA(pd,q)

model. Estimation of the parameter d can be approached by

estimating 6. Estimation of p and q can be approached by diverse

order determining methods involving estimating information.

Determining the degree of differencing: When a time series

Y(t) can be transformed to a stationary time series Z(t) by

differencing d times, one can think of the "spectral density"

fy(w) of Y(.) as having the representation

fy(w) le-27iw 1 2d fz(W)

- which is a special case of assuming that fy(w) is regularly
.varying at w-0 with index 6-2d. The foregoing estimators for 6

may provide alternatives to the techniques for estimating d

which have been proposed by Granger and Joyeux (1980), Janacek

(1982), and Geweke and Porter-Hudak (1983).

4-7

. ~ o , +.' .° "o -". - .o+ . " + - °. .+ . . .- .+ + + o. , ,. +S. -. -. -° . &°. , . . +o - A - - Po. , .. . . -



- . . • "' i . - -* . * . - . . - - --i***. . -,-

18

5. ARMA models and prediction error memory classification

The concept of an autoregressive process was introduced

by Yule (1927) as an alternative technique for detecing hidden

periodicities, and estimation of the frequency w in the time

series model

Y(t) = A cos 27wt + B sin 2irwt + e(t)

where E(-) is white noise. The function cos 2rwt satisfies the

second order difference equation

Y(t) + a1 Y(t-l) + a2 Y(t-2) - 0

with a1 = -2 cos 2frw and a2 - 1. Yule suggested determining

coefficients a1 and a2 minimizing

T2
Tj {Y(t) + a1 Y(t-l) + a2 Y(t-w)}

These coefficients may be interpreted as estimators of the

parameters in the "random shock" model

Y(t) + al Y(t-l) + a2 Y(t-2) - c(t)

where c(t) is white noise. Thus was born the AR(2) model.

a'
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Autoregressive (AR), moving average (MA), and autoregressive-

moving average schemes (ARMA) now play a central role in time

series analysis, since they provide basic models for time series

model identification, forecasting, and spectral estimation.

One definition of an ARMA(p,q) model for a zero mean

covariance stationary time series Y(t), t=O, +1, ... is

Y(t) + a (1) Y(t-l) + ... + a (p) Y(t-p)
p p

= E(t) + bq(1) s(t-l) +...+ bq(q) e(t-q)

where E(t) is a white noise time series, and the transfer

functions

gp (z) = 1 + (l)z+. .+ a' (p) zP,

hq(z) = + b (1) z +...+b (q) zq

q q q

have all their roots in the complex z-plane in the region Izl>l.

For the backward shift operator B we use the lag operator L,

defined by LY(t) Y(t=l). An ARMA(p,q) model is written

" p(L) Y(t) = hq (L) c (t)

An AR(-) model is expressed

. . ...
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g=(L) Y(t) = E(t)

An MA(-) model is expressed

Y(t) = h0 (L) c'(t)

A model for a stationary time series is an invertible

filter which transforms it to white noise. For a short memory

time series, the whitening filters can always be represented as

AR(-) or MA(-) and are approximated by ARMA(p,q) of suitable

orders to be estimated. The white noise c(t) to which we seek

to transform a time series Y(t) are the infinite memory one

step ahead prediction errors (innovations) YV(t) =Y(t)-Y(t),

where
e 'Y"(t) = E[Y(t) IY(t-l) ...

J.

The white noise sequence Yv(t) has mean 0 and variance a'R(0),

where

a = E 2YV(t) 2 - R(0) R(O) = E[IY(t)I 2

We call a' the normalized mean square prediction error, of one-

step ahead infinite memory prediction. The importance of

normalization (which may not currently be standard practice for

all time series analysts) is emphasized by the information theory

approach in the next section. A basic diagnostic tool is the

memory m normalized mean square prediction errors

p.
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a 2  E[ yj'(t)12 ] R(0),

* YV' m(t) Y(t) - YpJm(t)

-YIJm(t) = am (1) Y(t-l) +...+ am (m)'Y(t-m)

Given a true (or sample) correlation function p(v), one can

compute (using the Yule-Walker equations) the sequence a which

converges monotonely to the limit a0. An alternative approach

to computing .2 is the fundamental formula

log a2 =10 log f(w) dw

The value of 02 is a very useful diagnostic measure of the memory

of a time series.

Memory classification by Normalized Mean Square Prediition Error

no memory a 02 = 0
0.

short memory 0 < a2 <

long memory _ 2 1.

The estimation of a2 is one of the basic problems of time

series model identification. One important method is

2 a.

m

A

where m is chosen by an order-determining criterion (AIC due to

Akalke or CAT due to Parzen). The pioneering work of Akaike (1974),
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(1977) has shown the central role of information theoretic

ideas in defining these criteria.

The next section discusses how to use information

- divergence ideas to measure the ability of ARMA(p~q) schemes

to provide approximating models to the exact models (of a

- short memory time series) provided by AR(-o) and 14A(-o)

* representations.
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6. Information approach to memory and ARMA schemes

Information divergence of a probability density g from a

(true) probability density f is defined by

I(f;g) = f O{-log )) } f(y) dy

Information has an important decomposition

I(f;g) = H(f;g) - H(f)

defining cross-entropy H(f;g) and entropy H(f) by

H(f;g) = fo{-log g(y)} f(y) dy

H(f) = H(f;f) = { (-log f(y)} f(y) dy

The information I(YIX) about a continuous random variable

Y in a continuous random vector X is defined by

I(YIX) = '(fyiX; fy) = EX I(fYX; fy)

The entropy of Y and conditional entropy of Y given X are

defined by

H(Y) - H(fy)

'.-,
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H(YIX) - H(fyX) - ExH(fyX.x )

One can establish a fundamental decomposition

I(YIX) - H(Y) - H(YIX)

Define the information about Y in X conditioned on X1 by

I(YIX; X1 ,X 2 ) -H(f YXl- H(fYlXl,X 2)

- H(YIX 1)- H(Y1X1 ,X2)

A fundamental formula to evaluate an information increment is

I(YIXl;X IX 2 ) - I(YlXlX 2 ) - I(YIX1 )

When X and Y are jointly normal random variables, let E(Y)

denote the variance of Y and E(YIX) the conditional variance of

Y given X (which does not depend on the value of X). Then

1 1H(Y) = log E(Y) + -1 (1 + log 27)

H(YIX) = log Z(YIX) + (1 + log 2w)

* I(YIX) - - log E-l(Y) E(YIX)

oS . . . . .. . . . . . . . .

. . . . . . . . . . . . . .
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A general approach to memory uses information in the

infinite past about the current value, defined by

I lim I
I m-

m = I(Y(m+l)jY(l),... ,Y(m))

Information Definition of Memory. We define a time series

* Y(t), t=O, +1,... to be

no memory - I -0

short memory 0 < I <co

long memory IO M cc

This definition agrees with the criterion in the previous

section in terms of a.' since for a stationary Gaussian time

series I log 02 .

Example. A random walk has long memory and white noise has

no memory.

A random walk is defined by Y(m+l) = Y(m) + e(m+l), Y(0) - 0,

where c(t) are independent N(0,a2), E(Y(m+l)) - (m+l) o2,

ElY(m+l)IY(l) ,..,Y(m)] - Y(m), E(Y(m+l)IY(1)l,...,Y(m)) = a2,

Im  log (M+1), IO MM. A purq white noise is defined by

Y(m) - c(m). Then E(Y(m+l)) -a, E[Y(m+l)IY(l),...,Y(m)] 0,

z(Y(m+l) Y(1),...,Y(m))-. 9 I-m 0, I - 0.

.,3

! %
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Both a random walk and a pure white noise can be regarded

as special cases (corresponding to p-i and p- 0 respectively)

of the AR(l) model

Y(t) -f pY(t-l) + c(t), t-1i ,20....

where c(t) are independent N(0,o2 ). When I1p < 1, an AR(l)

defines a stationary (or asymptotically stationary) time series

satisfying

I- log (l-p2).

In order to transform one's thinking about AR(l) models from

p to I one needs a table of corresponding values of these

parameters.

p .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

I .005 .020 .047 .087 .144 .223 .337 .511 .830 1.16

1 .25 .5 .75 1.0 1.25 1.50 1.75 2 3 4

p .627 .795 .881 .930 .958 .975 .985 .991 .999 .9998

A very quick and dirty rule for memory diagnosis is to regard an

observed value of I > 1.5 as an early detector of very long

memory, and I. > 1.00 as an early detector of long memory.

This rule is to be used in conjunction with other rules for

discriminating memory type which are given in Section 7.
ft.
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We next discuss how to interpret an ARMA(p,q) scheme in
terms of information. Let Ipq I(YIY_ 1~. .,yp Y v Yl, . . . Y.vq

denote the information about Y(t) in Y(t-1) ,Y(t-p)

YV(t-1) . ,Yv(t-q). For a Gaussian stationary short memory

time series

pq =- log 0 2
p~q P,q

where

o = , §q(Y) 2(Yyi'... Y-p# Y"1,... #Yiq)*

Let Y- denote the infinite past Y(t-1), Y(t-2), ... Then

,I I(YjY-) - - log 02

A measure of the goodness of fit of an ARMA(p,q) model to

the true model for a stationary time series is

I (YjY .... y_ yV .. 'V Y-)

pq

log 2 + log ap 2.p

A time series Y(-) is ARMA(pq) if, and only if, I p,q;- 0.

C-.
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Formulas for Ip,q;. are most conveniently developed in

terms of the coefficients O1, 82,... of the MA(-) representation

of a time series:

Y(t) - YV(t) + 8I YV(t-l) +

There are two methods for estimating the MA(-) coefficients;

invert AR( m) where m is chosen by an order-determining

criterion, or derive 0k from estimators of (the cepstral

pseudo-correlations)

(v) f exp (2wivw) log f(w) dw

-0.5

In the Gaussian case, information is (up to a constant)

*: the logarithm of variance. It may seem that there is no

*' reason to prefer information to variance. However information

concepts are meaningful even for non-Gaussian series (although

they have not yet been extensively calculated in the non-Gaussian

case). Thus by translating variance into information, one can

eventually transfer one's Gaussian intuition to non-Gaussian

data analysis.

To illustrate the use of information in model identification,

let us consider the loss one sustains in using the best fitting

AR(2) model when the true model is an ARMA(l,l)

Y(t) + a Y(t-l) - c(t) + b c(t-l)

.- . *'. *4 .. . . * .. .... ...-- *. -. .. .. . . ; . -.
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One can compute a2, p(l), p(2) in terms of a and b. The values

of *(l) and P(2) determine (via the Yule-Walker equations) the
A A A

optimal values a , a2 (l), a2 (2). When a - -.5, b - .5, one
A

obtains a! 2= .4286, W~) - .7143, p(2) - .3571;0 .4418,

a2 (l) - -.9378, a2 (2) - .3126. The information loss in using

the approximating AR(2) model

Y(t) - .9378 Y(t-1) + .3126 Y(t-2) = c(t)

rather than the exact ARMA(ilI) with -a=b=.5 is .015, since

I(YjY_I,Y_ 2 ; Y) - {- log a2} - {- logao2

.4236 - .4084 = .015
'I

Estimating MA(-) is also a prerequisite to using another

criterion that we use to estimate memory: the Prediction Variance

Horizon function, introduced in Parzen (1981). It provides a

quantitative method of measuring memory (especially medium

memory) by HORIZON, defined as the smallest value of h for which

1 + .> 0.95
1 + 02(1) +..

The left hand side of the above inequality can be interpreted

as representing the mean square error of prediction h steps

ahead.

S.
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7. Quantile based time series diagnostics, and their

representative values

This section introduces various quantile based time series

diagnostic measures. Their use can be considered exploratory

data analysis since they require no theory for interpretation if

one is willing to base one's conclusions on the empirically

observed values of the criteria for representative time series.

On the other hand, the criteria are based on clearly stated

concepts of probability theory, and one could study theoretially

the distribution of the criteria for various time series models.

Quantile diagnostics of normality of data. A diagnostic

measure of the shape of a distribution is the log standard

deviation of the informative quantile function, denoted LNSDIQ,

and defined by

LSDIQ log standard deviation of original data
twice interquartile range

For a normal distribution, interquartile range equals 1.35

standard deviation; therefore LNSDIQ - - log 2.7 = -1

approximately. We can regard a significant difference of

LNSDIQ from -1 as an indication that the probability distribution

of the data is not normal (Gaussian). A more formal test of

normality is to compare LNSDIQ with LNSGMO = log &o' where

a o IQ(u) du00
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is the score deviation (an efficient estimator of a for a

normal distribution, obtained as a linear combination of order

statistics). This test (analogous to the Shapiro-Wilk test for

normality) requires further theory as we find examples in which

the data have IQ(u) plots that are not normal (confirmed by

LNSDIQ different from -1), yet LNSDIQ and LNSGMO are not

different.

To decide whether data is normal, the entire graph of the

informative quantile [IQ(u)] function should be examined.

However an early detector of the shape is provided by the
value of LNSDIQ as is indicated by the following empirical

values:

LNSDIQ 10

Variable Cauchy white noise 0
-1.14 Airlines log monthly 1.38
-1.14 NYC Monthly Births .93
-1.24 Lines + Noise 1.72
-1.34 Cauchy random walk 1.48
-1.34 NYC Monthly Temperature 1.17
-1.32 Normal random walk 1.11

In the tables in this section, I . - log 02 is estimated
by I^ for the approximating AR(m) scheme, where the order m is

m

determined by the AIC criterion (or equally the CAT criterion).

Periodogram. For a white noise time series whose random

variables have finite second moment, the quantile function of

the periodogram should be that of an exponential distribution with

mean 1. A test of white noise is provided by examining IQ(u)
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for exponentiality. Powerful discriminators of memory type are

the median and variance of the periodogram. For white noise

Periodogram median - log 2 - .69

Periodogram variance - 1.

As memory increases, per. median decreases and per. variance

increases, as the following empirical results confirm [the values

for AR(l) processes are based on the table "Quantile Memory

Analysis of Simulated AR(l)" in the Appendix].

Periodogram median

.89 Cauchy white noise

.7 Normal white noise

.2 Normal AR(), p = .8

.08 Normal AR(), p - .9

.02 Normal AR(), p = .99

.08 NYC Births Monthly

.06 NYC Temperatures Monthly

.04 Normal random walk

.03 Airlines log monthly

.03 Cauchy random wlak

.02 Lines plus noise

Periodogram variance

67.7 Lines plus noise
49.8 NYC Temperatures Monthly
41.5 Normal random walk
38.3 Cauchy random walk
39.7 Airline log monthly
33.1 NYC Births monthly
42. Normal AR(), p - .99
22. Normal AR(l), p = .9
1 Normal white noise
.5 Cauchy white noise

.1
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Correlations. As a memory diagnostic, we use correlations

mean square of sample correlation p(v) - PT(v), v-,2...,

" N
SP2 (v)

computed for a large value of N. It is zero for white noise, and

increases with memory. Some empirical values are:

.002 Cauchy white noise

.004 Normal white noise

.01 Normal AR(), p - .7

.1 Normal AR(l), p - .9

.2 Normal AR(2), p - .99

.14 NYC Births monthly

.18 Normal random wlak

.17 Cauchy random walk

.19 Airlines log monthly

.23 Line plus noise

.26 NYC Temperatures monthly

Delta estimators. A conclusion that a time series is long

memory is regarded by us as valid only when it is confirmed by

the behavior of the sequence of estimators 6k of the memory

index 6. We routinely form these estimators at w=O and w=1/12.

Note that 1/12 is the period of an annual cycle in monthly data;

the program permits the specification of any other seasonal

frequency. Two sequence of estimators 6k are formed; from the

best approximating AR scheme, and from Parzen window eatimators

with truncation point approximately equal to T/2, where T is

the time series sample size [the time series examined had

T-144 to 200].

'4 . ,; . ' , , , . . .. ..- - - . . - .., - . i - - _ . . _ ;
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Our "estimator" 6 is currently only a summary of the

behavior of the sequences 6k , indicating a value about

which there is clustering. For normal AR(l) schemes at w=0

the following typical values were found in simulated series.

approximate 6 2 1.5 !

when I, 1.75, 2 1.25, 1.50 1

p .99 .96 .93

For empirical series we observed the following estimators 6:

W 0 w 1/12

Best Parzen Best Parzen
AR window AR window

Lines + Noise 1.98 2.22 .38 .51Cauchy random walk 1.84 1.84 .37 .48

Airlines log monthly 2.33 2.22 1.56 1.42
NYC Temperatures Monthly -.4 -.8 2.1 2.6
NYC Births Monthly 2.05 1.74 1.12 .77

Note that a negative value of 6 at w=0 indicates the

possibility that the spectral density f(w) is zero at w=O.

Partial correlations. The sequence of partial correlations

are usually used to diagnose if the time series obeys an

autoregressive scheme, since AR(p) is equivalent to partial

correlations equal to 0 for orders greater than p. The quantile

function of partial correlations then should look like white

Iio"."." '.'... -i. -?*- .- .* .? ? . .- ...- - - - ..- *. * -~ . .-. . *.. - - * i-. . .
-
. . ,- .- .
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noise plus as many outliers as the order of the scheme. As

diagnostic measures of memory we compute:

PCIQR - interquartile range of the quantile

function of partial correlations;

PCLNSD f log standard deviation of the informative

quantile function IQ(u) of partial

autocorrelations;

PCOUT = number of partial correlations greater in

absolute value than twice interquartile

range, number of values of u at which

IIQ(u)I > 1.

Typical values of these measures for representative time series

will be published elsewhere.

d -

5C
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8. ARSPIQ analysis of simulated long memory series

To illustrate their research on long memory time series

models, Granger and Joyeux (1980) generated series of the form

(i-L)dy(t) - c(t)

with spectral density (for some constant c)

fy (w) - c(l- cos 2w) - d

This spectral density is regularly varying at w=0 with memory

index 6=2d. They generated two series of length 400,

corresponding to d - .25 (6-.5) and d = .45 (6-.9). We call

these series White 6.5 and White 6.9 respectively. I would

like to thank Clive Granger and Roselyne Joyeux for having given

us copies of their series to study. Some of the diagnostics

generated by ARSPIQ are as follows:

White 6.5 White 6.9

DATA LNSDIQ -.95 -1.03
DATA LNSGMO -.95 -1.03

- Variance Periodogram 6.9 10.9
Median Periodogram .54 .30
Correlation Mean Square .02 .03
Delta Estimator w-O

Best AR 0.9 1.0
Parzen Window 0.6 1.2

AIC order & 7 4

:I =- log a .14 .35
Prediction Variance Horizon 24 20

.. . .. . .. . .. . ..
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Comparing these diagnostics with the values obtained for

various series in Section 7, we might conclude the following

characteristics for the series.

Data LNSDIQ, LNSGMO Normal

Corr. Mean Square Short memory

-" Periodogram, Var Short memory

Periodogram, Median Short memory

IC0 Short memory

Pred. Var. Hor. Medium memory

Delta w=O Long memory

Printer plots of delta estimators are given in Figures 5,

6, 11, 12. One does not currently get an exact numerical

estimate of 6. But the values estimated for 6 are consistent

wiht the theoretical values of 6 used in generating the time

series. On the basis of the foregoing diagnostics, one would

be justified in recommending a fractional differencing of the

time series, using a rough estimate of 6.

If one fitted an ARMA model to these series one might be

tempted to fit ARMA(ll) models: for white 6.5,

Y(t) .75 Y(t-1) (t) -. 47 k(t-1)

for white 6.9,

Y(t) - .89 Y(t-l) - £(t) - .44 c(t-1)

9t
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By comparing the spectral distribution function of these ARMA

schemes with the cumulative periodogram one would see that the

ARMA models inadequately modeled the low frequency portion of

the spectral distribution function.

The question is open whether expect practictioners of purely

time domain ARMA or ARIMA methods of time series analysis could

*- identify the model generating the series simulated by Granger and

Joyeux.

le,

-s

5, j . . . . o o . . . , . . . . . . . ... .. ...

' .- .. % ?....'-. ..,. : ,...,.... .. ,. -.... .....-. .. ..-. , .,- . ,• - . . . . -,, . ,- , .-



39

9. Does the airline data fit the airline model?

The aim of time series modeling is to find a filter that

transforms the time series to white nosie. A possible model

identification procedure is to guess a model, estimate its

parameters, form the residuals, and test if the residuals are not

significantly different from white noise. This procedure in

practice may lead two different analysts to infer two different

models. The question is open how to resolve which model to

-: accept (which model is "better"). The concept of memory seems to

provide a characteristic of a time series which can be estimated

non-parametrically. Statisticians must decide whether to

accept as a model fitting criterion the following: a model

fitted to a time series must satisfy the criterion that its

memory characteristics agree with those estimated from the

data.

The operation of this criterion can be illustrated by a

classic series used as a test case by researchers on time series

model identification methods - log international airlines

passengers series. The model fitted by Box and Jenkins (1970)

to this series has become celebrated as the "airline model". It

takes 1st and 12th differences of the series Y(t) to form a short

memory time series Y(t):

12

Y(-) is modeled as a special form of MA(12):
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• .-, ~ I_ 12 2
Y(t) - (I-8 1 L) (1- 12 L e(t).

Parzen (1982) has suggested that 12th differences might suffice

as an operation which transforms the original series (which has

long memory) to a new series which is just barely sbort memory.

The diagnostics in the table [which one interprets by comparing

them with the representative values in Section 7] indicate

that 12th differencing does suffice to yield short memory.

Log Airline
Log Airline 12th difference

Data LNSDIQ -1.15 -.97
Data LNSGMO -1.16 -.97
Periodogram Median .03 .19
Periodogram Variance 39.7 7.7
Correlation Mean Sq. .19 .05
Delta Estimate w=O

Best AR 2.33 0
Parzen Window 2.22 0

Delta Estimate w = 1/12
Best AR 1.56 0
Parzen Window 1.42 0

I- - log G^ 1.38 .5

Prediction variance horizon 51 66+

Note on how we form the estimator 6: we write 6=0 to

indicate that sequence 6k oscillates between negative and

positive values. Negative values could indicate 6<0 and presence

of a zero of the spectral density. In our current state of

knowledge we assign a value to 6 representing essentially flat

behavior of 6k . If the 12th difference spectral density had a

zero at w-0 or w/l/12, we would suspect that we had over-differenced.
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A quantitative measure of memory is the prediction variance

horizon [51 for airline, >66 for 12th difference]; one concludes

that differencing the time series still has significant trend

components (long memory). The ARARMA modeling procedure of

Parzen (1982) finds that if one transforms the airline series by

the operator I - 1.02L 12 rather than by I - one does obtain

a time series which is unequivocably short memory.
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10. ARSPIQ Analysis of 12th difference of white noise

The ability of ARSPIQ to identify t.m series models may

be well illustrated by an analysis of a simulated time series

Y(t) - e(t) - c(t-12),

where e(t) is N(0,1) white noise. A sample of size T-200 was

simulated. It had mean .02, median .01, variance 2.16. The

DATA diagnostics LNSDIQ = -1.04, LNSGMO - -1.04 indicate that

the data is normal.

The diagnostics

Periodogram median .38

Periodogram variance 2.63

Correlation mean square .01

Best AR order Mi 24

indicate that the time series is short memory. But the AR

spectral density estimator does not perform well.

The delta diagnostics indicate that the time series is

long memory. That the spectral density has zeroes at frequencies

w-0 and w- 1/12 is indicated by significantly negative values of 6:

Delta estimate W-0 w - 1/12

Best AR(m - 24) -1.9 -1.2

Parzen window -1 6 - .9

4. , ,

, ' ,. ,. .. ., "" -. .. .. . . . . . . . . .- .. ... .. : .. .. , , .- ,. - .- . . .. .. -. -. . . . - . ., ,. , ., ., . .. ,, '" '. .- ." - , " ", . . . -.
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To estimate prediction variance horizon [and an ARMA scheme

by select regression on the covariance matrix of Y(t-J), Y (t-k)]

we fit an MA(-) by inverting an AR(96) whose coefficients are

computed by a Burg algorithm; it estimates I = .63, prediction

horizon > 100, and chooses the model

Y(t) + .41 Y(t-12) - e(t) - .55 e(t-12).

This ARMA spectral density has exactly the shape of the true

spectral density of Y(-).

4,4

I,
*1. , . .. . . --. , . . . . . , - . .- . . . , . .. ,. , . . . , . . ,., . . ' : . . .- - i.

-...4" ' . . - , ' ' ' , . .. - . . ,. . . . - t 7 ; . - _ , . _
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11. Quantile graphics printer plots illustrated

The printer plot graphical output generated by ARSPIQ is

illustrated for the long memory simulated series White 6.5

and White 6.9 which are respectively labelled JOY1 and JOY2

on the attached output.

Informative quantile function of the original time series

" JOYl and JOY2 are plotted in Figure 1 and 7 respectively (with

letters 0 and M); IQ(u) plots indicate noziality, confirmed by

* D(u) plots in Figures 2 and 8.

Informative quantile function of the periodogram of time

series JOY1 and JOY2 are plotted in Figures 3 and 9

respectively; they are not exactly exponential, as is confirmed

by D(u) plots in Figures 4 and 10.

The index 6 of regular variation of the spectral density at

zero frequency is estimated by the "limit" of the sequence 6k

plotted in Figures 5 and 11 (using AR spectral density estimator)

and Figures 6 and 12 (using Parzen window spectral density

estimator). In Figure 5, a limit exists which is approximately

0.9; in figure 6, one may assign a limit value of approximately

0.6. In figure 11 the limit is assigned to be approximately 1;

in figure 12, the limit is assigned to be approximately 1.2.

Figures 13 and 14 represent covariances of the time series

Y(t) and its innovations c(t) = YV(t) estimated for input into

the "ARMA identification by select regression" procedure. The

4% last column is Prediction Variance Horizon function.

Horzo
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12. Concluding Remarks

It is important to understand the role of memory when

using [for time series model identification] ARIMA (p,d,q)

models introduced by Box and Jenkins (1970). Memory is related

to d, but not to the orders p and q. An AR(l) process Y(t)

satisfying gl(L) Y(t) - e(t) where gl(z) - l-pz is diagnosed as

long memory when the transfer function gl(z) has its root i/p

close to the unit circle in the complex z-plane. An example

of a long memory population correlation function is p(v) -

cos 2rwt, which can be regarded as corresponding to an AR(2)

scheme whose transfer function g2 (z) = 1-(2 cos 27w)z + z2

has roots on the unit circle. In the ARSPIQ approach to time

series model identification, roots ar. not explicitly evaluated

because their role is subsumed by.memory.

The models automatically identified by ARSPIQ have been

found in practice to have the same quality as exact models for

purposes of forecasting and spectral estimation. Other

diagnostics of model structure (such as correlations, partial

correlations, and inverse correlations) are also generated in

ARSPIQ and can be used in traditional ways to guess model

structure.

There are still many open problems in the theory of time

series model identification, such as tests to determine which of

several possible models fits best. FUN.STAT (statistical

reasoning based on quantiles, entropy and information, and
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-.1functional statistical inference) may be able to help statistical
- scientists find better solutions to problems of model

* identification.
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ARSPIQ

The ARSPIQ Fortran Computer Program for Time Series Model

Identification by estimating information and memory is used at

Texas A&M in a batch mode. It generates the following output

for examination by the time series analyst.

1. Quantile data analysis of original data: ~IQ(u)
Goodness of fit of normal distribution: D(u).
LNSQID, LNSGMO
Generates time series Y(t) with median subtracted

2. Quantile data analysis of normalized periodogram: IQ(u)
Goodness of fit of exionential distri ution: (u)
Median periodogram, variance periodogram
Delta estimates at zero and seasonal frequencies (based

on periodogram, usually no limit evident).

3. Quantile data analysis of correlations: IQ(u)
Goodness of fit of normal distribution: D(u)

"N Correlation mean square

4. Quantile data analysis of partial correlations: IQ(u)
Goodness of fit of normal distribution: D(u)
Partial correlation inter-quartile range, number of outliers

5. AR Description of time series: ^AIC, CAT orders
AR coefficients for best order m and 2nd best order
AR spectral density and spectral distribution plots

6. AR spectral density delta estimators at zero and seasonal

frequencies
Parzen window spectral density delta estimators

7. MA(w) estimation
AR coefficients for order 4;1, computing partial correlations

by non-stationary AR (Burg) method, or optionally by
stationary AR(Yule-Walker) method

Inverse correlations
Infinite MA coefficients, prediction variance horizon

8. ARMA model identification by select regression
t.- ARMA spectral density and spectral distribution plots.

9. Cepstral pseudo-correlation estimation.

10. Spectral local quantile estimation.
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